harmony/adr/core-abstractions/topology/src/main_geminifail.rs

493 lines
16 KiB
Rust

use std::any::Any;
use std::fmt::Debug;
use std::process::Command;
pub trait Capability {}
pub trait CommandCapability: Capability {
fn execute_command(&self, command: &str, args: &Vec<String>) -> Result<String, String>;
}
pub trait KubernetesCapability: Capability {
fn apply_manifest(&self, manifest: &str) -> Result<(), String>;
fn get_resource(&self, resource_type: &str, name: &str) -> Result<String, String>;
}
pub trait Topology {
fn name(&self) -> &str;
}
pub trait Interpret<T: Topology> {
fn execute(&self, topology: &T) -> Result<String, String>;
}
// --- Score Definition Structs (Concrete) ---
// CommandScore struct remains the same
#[derive(Debug, Clone)] // Added Debug/Clone for easier handling
pub struct CommandScore {
name: String,
command: String,
args: Vec<String>,
}
impl CommandScore {
pub fn new(name: String, command: String, args: Vec<String>) -> Self {
Self { name, command, args }
}
}
// K8sResourceScore struct remains the same
#[derive(Debug, Clone)]
pub struct K8sResourceScore {
name: String,
manifest: String,
}
impl K8sResourceScore {
pub fn new(name: String, manifest: String) -> Self {
Self { name, manifest }
}
}
// --- Metadata / Base Score Trait (Non-Generic) ---
// Trait for common info and enabling downcasting later if needed
pub trait ScoreDefinition: Debug + Send + Sync {
fn name(&self) -> &str;
// Method to allow downcasting
fn as_any(&self) -> &dyn Any;
// Optional: Could add methods for description, parameters etc.
// fn description(&self) -> &str;
// Optional but potentially useful: A way to clone the definition
fn box_clone(&self) -> Box<dyn ScoreDefinition>;
}
// Implement Clone for Box<dyn ScoreDefinition>
impl Clone for Box<dyn ScoreDefinition> {
fn clone(&self) -> Self {
self.box_clone()
}
}
// Implement ScoreDefinition for your concrete score types
impl ScoreDefinition for CommandScore {
fn name(&self) -> &str {
&self.name
}
fn as_any(&self) -> &dyn Any {
self
}
fn box_clone(&self) -> Box<dyn ScoreDefinition> {
Box::new(self.clone())
}
}
impl ScoreDefinition for K8sResourceScore {
fn name(&self) -> &str {
&self.name
}
fn as_any(&self) -> &dyn Any {
self
}
fn box_clone(&self) -> Box<dyn ScoreDefinition> {
Box::new(self.clone())
}
}
// --- Score Compatibility Trait (Generic over T) ---
// This remains largely the same, ensuring compile-time checks
pub trait Score<T: Topology>: ScoreDefinition {
// No need for name() here, it's in ScoreDefinition
fn compile(&self) -> Result<Box<dyn Interpret<T>>, String>;
}
// --- Implementations of Score<T> (Crucial Link) ---
// CommandScore implements Score<T> for any T with CommandCapability
impl<T> Score<T> for CommandScore
where
T: Topology + CommandCapability + 'static, // Added 'static bound often needed for Box<dyn>
// Self: ScoreDefinition // This bound is implicit now
{
fn compile(&self) -> Result<Box<dyn Interpret<T>>, String> {
// Pass necessary data from self to CommandInterpret
Ok(Box::new(CommandInterpret {
command: self.command.clone(),
args: self.args.clone(),
}))
}
}
// K8sResourceScore implements Score<T> for any T with KubernetesCapability
impl<T> Score<T> for K8sResourceScore
where
T: Topology + KubernetesCapability + 'static,
// Self: ScoreDefinition
{
fn compile(&self) -> Result<Box<dyn Interpret<T>>, String> {
Ok(Box::new(K8sResourceInterpret {
manifest: self.manifest.clone(), // Pass needed data
}))
}
}
// --- Interpret Implementations ---
// Need to hold the actual data now
struct CommandInterpret {
command: String,
args: Vec<String>, // Or owned Strings if lifetime is tricky
}
impl<'a, T> Interpret<T> for CommandInterpret
where
T: Topology + CommandCapability,
{
fn execute(&self, topology: &T) -> Result<String, String> {
// Now uses data stored in self
topology.execute_command(&self.command, &self.args)
}
}
struct K8sResourceInterpret {
manifest: String,
}
impl<T: Topology + KubernetesCapability> Interpret<T> for K8sResourceInterpret {
fn execute(&self, topology: &T) -> Result<String, String> {
topology.apply_manifest(&self.manifest)?;
// apply_manifest returns Result<(), String>, adapt if needed
Ok(format!("Applied manifest for {}", topology.name())) // Example success message
}
}
// --- Maestro ---
// Maestro remains almost identical, leveraging the Score<T> bound
pub struct Maestro<T: Topology> {
topology: T,
// Stores Score<T> trait objects, ensuring compatibility
scores: Vec<Box<dyn Score<T>>>,
}
impl<T: Topology + 'static> Maestro<T> { // Often need T: 'static here
pub fn new(topology: T) -> Self {
Self {
topology,
scores: Vec::new(),
}
}
// This method signature is key - it takes a concrete S
// and the compiler checks if S implements Score<T>
pub fn register_score<S>(&mut self, score: S) -> Result<(), String>
where
S: Score<T> + ScoreDefinition + Clone + 'static, // Ensure S is a Score for *this* T
// We might need S: Clone if we want to store Box::new(score)
// Alternatively, accept Box<dyn ScoreDefinition> and try to downcast/wrap
{
println!(
"Registering score '{}' for topology '{}'",
score.name(),
self.topology.name()
);
// The compiler has already guaranteed that S implements Score<T>
// We need to box it as dyn Score<T>
self.scores.push(Box::new(score));
Ok(())
}
// Alternative registration if you have Box<dyn ScoreDefinition>
pub fn register_score_definition(&mut self, score_def: Box<dyn ScoreDefinition>) -> Result<(), String>
where
T: Topology + CommandCapability + KubernetesCapability + 'static, // Example: list all needed caps here, or use generics + downcasting
{
println!(
"Attempting to register score '{}' for topology '{}'",
score_def.name(),
self.topology.name()
);
// Downcast to check concrete type and then check compatibility
if let Some(cs) = score_def.as_any().downcast_ref::<CommandScore>() {
// Check if T satisfies CommandScore's requirements (CommandCapability)
// This check is somewhat manual or needs restructuring if we avoid listing all caps
// A simpler way is to just try to create the Box<dyn Score<T>>
let boxed_score: Box<dyn Score<T>> = Box::new(cs.clone()); // This relies on the blanket impls
self.scores.push(boxed_score);
Ok(())
} else if let Some(ks) = score_def.as_any().downcast_ref::<K8sResourceScore>() {
// Check if T satisfies K8sResourceScore's requirements (KubernetesCapability)
let boxed_score: Box<dyn Score<T>> = Box::new(ks.clone());
self.scores.push(boxed_score);
Ok(())
} else {
Err(format!("Score '{}' is of an unknown type or incompatible", score_def.name()))
}
// This downcasting approach in Maestro slightly undermines the full compile-time
// check unless designed carefully. The generic `register_score<S: Score<T>>` is safer.
}
pub fn orchestrate(&self) -> Result<(), String> {
println!("Orchestrating topology '{}'", self.topology.name());
for score in &self.scores {
println!("Compiling score '{}'", score.name()); // Use name() from ScoreDefinition
let interpret = score.compile()?;
println!("Executing score '{}'", score.name());
interpret.execute(&self.topology)?;
}
Ok(())
}
}
// --- TUI Example ---
struct ScoreItem {
// Holds the definition/metadata, NOT the Score<T> trait object
definition: Box<dyn ScoreDefinition>,
}
struct HarmonyTui {
// List of available score *definitions*
available_scores: Vec<ScoreItem>,
// Example: Maybe maps topology names to Maestros
// maestros: HashMap<String, Box<dyn Any>>, // Storing Maestros generically is another challenge!
}
impl HarmonyTui {
fn new() -> Self {
HarmonyTui { available_scores: vec![] }
}
fn add_available_score(&mut self, score_def: Box<dyn ScoreDefinition>) {
self.available_scores.push(ScoreItem { definition: score_def });
}
fn display_scores(&self) {
println!("Available Scores:");
for (i, item) in self.available_scores.iter().enumerate() {
println!("{}: {}", i, item.definition.name());
}
}
fn execute_score(&self, score: ScoreItem) {
score.definition.
}
// Example: Function to add a selected score to a specific Maestro
// This function would need access to the Maestros and handle the types
fn add_selected_score_to_maestro<T>(
&self,
score_index: usize,
maestro: &mut Maestro<T>
) -> Result<(), String>
where
T: Topology + CommandCapability + KubernetesCapability + 'static, // Adjust bounds as needed
{
let score_item = self.available_scores.get(score_index)
.ok_or("Invalid score index")?;
// We have Box<dyn ScoreDefinition>, need to add to Maestro<T>
// Easiest is to downcast and call the generic register_score
if let Some(cs) = score_item.definition.as_any().downcast_ref::<CommandScore>() {
// Compiler checks if CommandScore: Score<T> via register_score's bound
maestro.register_score(cs.clone())?;
Ok(())
} else if let Some(ks) = score_item.definition.as_any().downcast_ref::<K8sResourceScore>() {
// Compiler checks if K8sResourceScore: Score<T> via register_score's bound
maestro.register_score(ks.clone())?;
Ok(())
} else {
Err(format!("Cannot add score '{}': Unknown type or check Maestro compatibility", score_item.definition.name()))
}
}
}
pub struct K3DTopology {
name: String,
linux_host: LinuxHostTopology,
cluster_name: String,
}
impl Capability for K3DTopology {}
impl K3DTopology {
pub fn new(name: String, linux_host: LinuxHostTopology, cluster_name: String) -> Self {
Self {
name,
linux_host,
cluster_name,
}
}
}
impl Topology for K3DTopology {
fn name(&self) -> &str {
&self.name
}
}
impl CommandCapability for K3DTopology {
fn execute_command(&self, command: &str, args: &Vec<String>) -> Result<String, String> {
self.linux_host.execute_command(command, args)
}
}
impl KubernetesCapability for K3DTopology {
fn apply_manifest(&self, manifest: &str) -> Result<(), String> {
println!("Applying manifest to K3D cluster '{}'", self.cluster_name);
// Write manifest to a temporary file
let temp_file = format!("/tmp/manifest-harmony-temp.yaml");
// Use the linux_host directly to avoid capability trait bounds
self.linux_host
.execute_command("bash", &Vec::from(["-c".to_string(), format!("cat > {}", temp_file)]))?;
// Apply with kubectl
self.linux_host.execute_command("kubectl", &Vec::from([
"--context".to_string(),
format!("k3d-{}", self.cluster_name),
"apply".to_string(),
"-f".to_string(),
temp_file.to_string(),
]))?;
Ok(())
}
fn get_resource(&self, resource_type: &str, name: &str) -> Result<String, String> {
println!(
"Getting resource {}/{} from K3D cluster '{}'",
resource_type, name, self.cluster_name
);
self.linux_host.execute_command("kubectl", &Vec::from([
"--context".to_string(),
format!("k3d-{}", self.cluster_name),
"get".to_string(),
resource_type.to_string(),
name.to_string(),
"-o".to_string(),
"yaml".to_string(),
]))
}
}
pub struct LinuxHostTopology {
name: String,
host: String,
}
impl Capability for LinuxHostTopology {}
impl LinuxHostTopology {
pub fn new(name: String, host: String) -> Self {
Self { name, host }
}
}
impl Topology for LinuxHostTopology {
fn name(&self) -> &str {
&self.name
}
}
impl CommandCapability for LinuxHostTopology {
fn execute_command(&self, command: &str, args: &Vec<String>) -> Result<String, String> {
println!("Executing on {}: {} {:?}", self.host, command, args);
// In a real implementation, this would SSH to the host and execute the command
let output = Command::new(command)
.args(args)
.output()
.map_err(|e| e.to_string())?;
if output.status.success() {
Ok(String::from_utf8_lossy(&output.stdout).to_string())
} else {
Err(String::from_utf8_lossy(&output.stderr).to_string())
}
}
}
// --- Main Function Adapated ---
fn main() {
// --- Linux Host ---
let linux_host = LinuxHostTopology::new("dev-machine".to_string(), "localhost".to_string());
let mut linux_maestro = Maestro::new(linux_host);
let df_score = CommandScore::new(
"check-disk".to_string(),
"df".to_string(),
vec!["-h".to_string()],
);
// Registration uses the generic method, compiler checks CommandScore: Score<LinuxHostTopology>
linux_maestro.register_score(df_score.clone()).unwrap(); // clone needed if df_score used later
// --- K3D Host ---
let k3d_host = LinuxHostTopology::new("k3d-host".to_string(), "localhost".to_string());
let k3d_topology = K3DTopology::new(
"dev-cluster".to_string(),
k3d_host,
"devcluster".to_string(),
);
let mut k3d_maestro = Maestro::new(k3d_topology);
let nodes_score = CommandScore::new(
"check-nodes".to_string(),
"kubectl".to_string(),
vec!["get".to_string(), "nodes".to_string()],
);
let nginx_score = K8sResourceScore::new(
"deploy-nginx".to_string(),
// ... manifest string ...
r#"..."#.to_string(),
);
// Compiler checks CommandScore: Score<K3DTopology>
k3d_maestro.register_score(nodes_score.clone()).unwrap();
// Compiler checks K8sResourceScore: Score<K3DTopology>
k3d_maestro.register_score(nginx_score.clone()).unwrap();
// --- TUI Example Usage ---
let mut tui = HarmonyTui::new();
// Add score *definitions* to the TUI
tui.add_available_score(Box::new(df_score));
tui.add_available_score(Box::new(nodes_score));
tui.add_available_score(Box::new(nginx_score));
tui.display_scores();
// Simulate user selecting score 0 (check-disk) and adding to linux_maestro
match tui.add_selected_score_to_maestro(0, &mut linux_maestro) {
Ok(_) => println!("Successfully registered check-disk to linux_maestro via TUI selection"),
Err(e) => println!("Failed: {}", e), // Should succeed
}
// Simulate user selecting score 2 (deploy-nginx) and adding to linux_maestro
match tui.add_selected_score_to_maestro(2, &mut linux_maestro) {
Ok(_) => println!("Successfully registered deploy-nginx to linux_maestro via TUI selection"), // Should fail!
Err(e) => println!("Correctly failed to add deploy-nginx to linux_maestro: {}", e),
// The failure happens inside add_selected_score_to_maestro because the
// maestro.register_score(ks.clone()) call fails the trait bound check
// K8sResourceScore: Score<LinuxHostTopology> is false.
}
// Simulate user selecting score 2 (deploy-nginx) and adding to k3d_maestro
match tui.add_selected_score_to_maestro(2, &mut k3d_maestro) {
Ok(_) => println!("Successfully registered deploy-nginx to k3d_maestro via TUI selection"), // Should succeed
Err(e) => println!("Failed: {}", e),
}
// --- Orchestration ---
println!("\n--- Orchestrating Linux Maestro ---");
linux_maestro.orchestrate().unwrap();
println!("\n--- Orchestrating K3D Maestro ---");
k3d_maestro.orchestrate().unwrap();
}