harmony/harmony_inventory_agent/src/hwinfo.rs

570 lines
22 KiB
Rust

use serde::{Deserialize, Serialize};
use serde_json::Value;
use std::fs;
use std::path::Path;
use std::process::Command;
use sysinfo::System;
#[derive(Serialize, Deserialize, Debug)]
pub struct PhysicalHost {
pub storage_drives: Vec<StorageDrive>,
pub storage_controller: StorageController,
pub memory_modules: Vec<MemoryModule>,
pub cpus: Vec<CPU>,
pub chipset: Chipset,
pub network_interfaces: Vec<NetworkInterface>,
pub management_interface: Option<ManagementInterface>,
pub host_uuid: String,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct StorageDrive {
pub name: String,
pub model: String,
pub serial: String,
pub size_bytes: u64,
pub logical_block_size: u32,
pub physical_block_size: u32,
pub rotational: bool,
pub wwn: Option<String>,
pub interface_type: String,
pub smart_status: Option<String>,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct StorageController {
pub name: String,
pub driver: String,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct MemoryModule {
pub size_bytes: u64,
pub speed_mhz: Option<u32>,
pub manufacturer: Option<String>,
pub part_number: Option<String>,
pub serial_number: Option<String>,
pub rank: Option<u8>,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct CPU {
pub model: String,
pub vendor: String,
pub cores: u32,
pub threads: u32,
pub frequency_mhz: u64,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct Chipset {
pub name: String,
pub vendor: String,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct NetworkInterface {
pub name: String,
pub mac_address: String,
pub speed_mbps: Option<u32>,
pub is_up: bool,
pub mtu: u32,
pub ipv4_addresses: Vec<String>,
pub ipv6_addresses: Vec<String>,
pub driver: String,
pub firmware_version: Option<String>,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ManagementInterface {
pub kind: String,
pub address: Option<String>,
pub firmware: Option<String>,
}
impl PhysicalHost {
pub fn gather() -> Self {
let mut sys = System::new_all();
sys.refresh_all();
Self {
storage_drives: Self::gather_storage_drives(),
storage_controller: Self::gather_storage_controller(),
memory_modules: Self::gather_memory_modules(),
cpus: Self::gather_cpus(&sys),
chipset: Self::gather_chipset(),
network_interfaces: Self::gather_network_interfaces(),
management_interface: Self::gather_management_interface(),
host_uuid: Self::get_host_uuid(),
}
}
fn gather_storage_drives() -> Vec<StorageDrive> {
let mut drives = Vec::new();
// Use lsblk with JSON output for robust parsing
if let Ok(output) = Command::new("lsblk")
.args([
"-d",
"-o",
"NAME,MODEL,SERIAL,SIZE,ROTA,WWN",
"-n",
"-e",
"7",
"--json",
])
.output()
&& output.status.success()
&& let Ok(json) = serde_json::from_slice::<Value>(&output.stdout)
&& let Some(blockdevices) = json.get("blockdevices").and_then(|v| v.as_array())
{
for device in blockdevices {
let name = device
.get("name")
.and_then(|v| v.as_str())
.unwrap_or("")
.to_string();
if name.is_empty() {
continue;
}
let model = device
.get("model")
.and_then(|v| v.as_str())
.map(|s| s.trim().to_string())
.unwrap_or_default();
let serial = device
.get("serial")
.and_then(|v| v.as_str())
.map(|s| s.trim().to_string())
.unwrap_or_default();
let size_str =
device.get("size").and_then(|v| v.as_str()).unwrap_or("0");
let size_bytes = Self::parse_size(size_str).unwrap_or(0);
let rotational = device
.get("rota")
.and_then(|v| v.as_bool())
.unwrap_or(false);
let wwn = device
.get("wwn")
.and_then(|v| v.as_str())
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty() && s != "null");
let device_path = Path::new("/sys/block").join(&name);
let mut drive = StorageDrive {
name: name.clone(),
model,
serial,
size_bytes,
logical_block_size: Self::read_sysfs_u32(
&device_path.join("queue/logical_block_size"),
)
.unwrap_or(512),
physical_block_size: Self::read_sysfs_u32(
&device_path.join("queue/physical_block_size"),
)
.unwrap_or(512),
rotational,
wwn,
interface_type: Self::get_interface_type(&name, &device_path),
smart_status: Self::get_smart_status(&name),
};
// Enhance with additional sysfs info if available
if device_path.exists() {
if drive.model.is_empty() {
drive.model =
Self::read_sysfs_string(&device_path.join("device/model"));
}
if drive.serial.is_empty() {
drive.serial =
Self::read_sysfs_string(&device_path.join("device/serial"));
}
}
drives.push(drive);
}
}
drives
}
fn gather_storage_controller() -> StorageController {
let mut controller = StorageController {
name: "Unknown".to_string(),
driver: "Unknown".to_string(),
};
// Use lspci with JSON output if available
if let Ok(output) = Command::new("lspci")
.args(["-nn", "-d", "::0100", "-J"]) // Storage controllers class with JSON
.output()
&& output.status.success()
&& let Ok(json) = serde_json::from_slice::<Value>(&output.stdout)
&& let Some(devices) = json.as_array() {
for device in devices {
if let Some(device_info) = device.as_object()
&& let Some(name) = device_info
.get("device")
.and_then(|v| v.as_object())
.and_then(|v| v.get("name"))
.and_then(|v| v.as_str())
{
controller.name = name.to_string();
break;
}
}
}
// Fallback to text output if JSON fails
if controller.name == "Unknown"
&& let Ok(output) = Command::new("lspci")
.args(["-nn", "-d", "::0100"]) // Storage controllers class
.output()
&& output.status.success() {
let output_str = String::from_utf8_lossy(&output.stdout);
if let Some(line) = output_str.lines().next() {
let parts: Vec<&str> = line.split(':').collect();
if parts.len() > 2 {
controller.name = parts[2].trim().to_string();
}
}
}
// Try to get driver info from lsmod
if let Ok(output) = Command::new("lsmod").output()
&& output.status.success() {
let output_str = String::from_utf8_lossy(&output.stdout);
for line in output_str.lines() {
if line.contains("ahci")
|| line.contains("nvme")
|| line.contains("megaraid")
|| line.contains("mpt3sas")
{
let parts: Vec<&str> = line.split_whitespace().collect();
if !parts.is_empty() {
controller.driver = parts[0].to_string();
break;
}
}
}
}
controller
}
fn gather_memory_modules() -> Vec<MemoryModule> {
let mut modules = Vec::new();
if let Ok(output) = Command::new("dmidecode").arg("--type").arg("17").output()
&& output.status.success() {
let output_str = String::from_utf8_lossy(&output.stdout);
let sections: Vec<&str> = output_str.split("Memory Device").collect();
for section in sections.into_iter().skip(1) {
let mut module = MemoryModule {
size_bytes: 0,
speed_mhz: None,
manufacturer: None,
part_number: None,
serial_number: None,
rank: None,
};
for line in section.lines() {
let line = line.trim();
if let Some(size_str) = line.strip_prefix("Size: ") {
if size_str != "No Module Installed"
&& let Some((num, unit)) = size_str.split_once(' ')
&& let Ok(num) = num.parse::<u64>() {
module.size_bytes = match unit {
"MB" => num * 1024 * 1024,
"GB" => num * 1024 * 1024 * 1024,
"KB" => num * 1024,
_ => 0,
};
}
} else if let Some(speed_str) = line.strip_prefix("Speed: ") {
if let Some((num, _unit)) = speed_str.split_once(' ') {
module.speed_mhz = num.parse().ok();
}
} else if let Some(man) = line.strip_prefix("Manufacturer: ") {
module.manufacturer = Some(man.to_string());
} else if let Some(part) = line.strip_prefix("Part Number: ") {
module.part_number = Some(part.to_string());
} else if let Some(serial) = line.strip_prefix("Serial Number: ") {
module.serial_number = Some(serial.to_string());
} else if let Some(rank) = line.strip_prefix("Rank: ") {
module.rank = rank.parse().ok();
}
}
if module.size_bytes > 0 {
modules.push(module);
}
}
}
modules
}
fn gather_cpus(sys: &System) -> Vec<CPU> {
let mut cpus = Vec::new();
let global_cpu = sys.global_cpu_info();
cpus.push(CPU {
model: global_cpu.brand().to_string(),
vendor: global_cpu.vendor_id().to_string(),
cores: sys.physical_core_count().unwrap_or(1) as u32,
threads: sys.cpus().len() as u32,
frequency_mhz: global_cpu.frequency(),
});
cpus
}
fn gather_chipset() -> Chipset {
Chipset {
name: Self::read_dmi("board-product-name").unwrap_or_else(|| "Unknown".to_string()),
vendor: Self::read_dmi("board-manufacturer").unwrap_or_else(|| "Unknown".to_string()),
}
}
fn gather_network_interfaces() -> Vec<NetworkInterface> {
let mut interfaces = Vec::new();
let sys_net_path = Path::new("/sys/class/net");
if let Ok(entries) = fs::read_dir(sys_net_path) {
for entry in entries.flatten() {
let iface_name = entry.file_name().into_string().unwrap_or_default();
let iface_path = entry.path();
// Skip virtual interfaces
if iface_name.starts_with("lo")
|| iface_name.starts_with("docker")
|| iface_name.starts_with("virbr")
|| iface_name.starts_with("veth")
|| iface_name.starts_with("br-")
|| iface_name.starts_with("tun")
|| iface_name.starts_with("wg")
{
continue;
}
// Check if it's a physical interface by looking for device directory
if !iface_path.join("device").exists() {
continue;
}
let mac_address = Self::read_sysfs_string(&iface_path.join("address"));
let speed_mbps = Self::read_sysfs_u32(&iface_path.join("speed"));
let operstate = Self::read_sysfs_string(&iface_path.join("operstate"));
let mtu = Self::read_sysfs_u32(&iface_path.join("mtu")).unwrap_or(1500);
let driver = Self::read_sysfs_string(&iface_path.join("device/driver/module"));
let firmware_version =
Self::read_sysfs_opt_string(&iface_path.join("device/firmware_version"));
// Get IP addresses using ip command with JSON output
let (ipv4_addresses, ipv6_addresses) = Self::get_interface_ips_json(&iface_name);
interfaces.push(NetworkInterface {
name: iface_name,
mac_address,
speed_mbps,
is_up: operstate == "up",
mtu,
ipv4_addresses,
ipv6_addresses,
driver,
firmware_version,
});
}
}
interfaces
}
fn gather_management_interface() -> Option<ManagementInterface> {
// Try to detect common management interfaces
if Path::new("/dev/ipmi0").exists() {
Some(ManagementInterface {
kind: "IPMI".to_string(),
address: None,
firmware: Self::read_dmi("bios-version"),
})
} else if Path::new("/sys/class/misc/mei").exists() {
Some(ManagementInterface {
kind: "Intel ME".to_string(),
address: None,
firmware: None,
})
} else {
None
}
}
fn get_host_uuid() -> String {
Self::read_dmi("system-uuid").unwrap_or_else(|| uuid::Uuid::new_v4().to_string())
}
// Helper methods
fn read_sysfs_string(path: &Path) -> String {
fs::read_to_string(path)
.unwrap_or_default()
.trim()
.to_string()
}
fn read_sysfs_opt_string(path: &Path) -> Option<String> {
fs::read_to_string(path)
.ok()
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty())
}
fn read_sysfs_u32(path: &Path) -> Option<u32> {
fs::read_to_string(path)
.ok()
.and_then(|s| s.trim().parse().ok())
}
fn read_dmi(field: &str) -> Option<String> {
Command::new("dmidecode")
.arg("-s")
.arg(field)
.output()
.ok()
.filter(|output| output.status.success())
.and_then(|output| String::from_utf8(output.stdout).ok())
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty())
}
fn get_interface_type(device_name: &str, device_path: &Path) -> String {
if device_name.starts_with("nvme") {
"NVMe".to_string()
} else if device_name.starts_with("sd") {
"SATA".to_string()
} else if device_name.starts_with("hd") {
"IDE".to_string()
} else if device_name.starts_with("vd") {
"VirtIO".to_string()
} else {
// Try to determine from device path
Self::read_sysfs_string(&device_path.join("device/subsystem"))
.split('/')
.next_back()
.unwrap_or("Unknown")
.to_string()
}
}
fn get_smart_status(device_name: &str) -> Option<String> {
Command::new("smartctl")
.arg("-H")
.arg(format!("/dev/{}", device_name))
.output()
.ok()
.filter(|output| output.status.success())
.and_then(|output| String::from_utf8(output.stdout).ok())
.and_then(|s| {
s.lines()
.find(|line| line.contains("SMART overall-health self-assessment"))
.and_then(|line| line.split(':').nth(1))
.map(|s| s.trim().to_string())
})
}
fn parse_size(size_str: &str) -> Option<u64> {
if size_str.ends_with('T') {
size_str[..size_str.len() - 1]
.parse::<u64>()
.ok()
.map(|t| t * 1024 * 1024 * 1024 * 1024)
} else if size_str.ends_with('G') {
size_str[..size_str.len() - 1]
.parse::<u64>()
.ok()
.map(|g| g * 1024 * 1024 * 1024)
} else if size_str.ends_with('M') {
size_str[..size_str.len() - 1]
.parse::<u64>()
.ok()
.map(|m| m * 1024 * 1024)
} else if size_str.ends_with('K') {
size_str[..size_str.len() - 1]
.parse::<u64>()
.ok()
.map(|k| k * 1024)
} else if size_str.ends_with('B') {
size_str[..size_str.len() - 1].parse::<u64>().ok()
} else {
size_str.parse::<u64>().ok()
}
}
fn get_interface_ips_json(iface_name: &str) -> (Vec<String>, Vec<String>) {
let mut ipv4 = Vec::new();
let mut ipv6 = Vec::new();
// Get IPv4 addresses using JSON output
if let Ok(output) = Command::new("ip")
.args(["-j", "-4", "addr", "show", iface_name])
.output()
&& output.status.success()
&& let Ok(json) = serde_json::from_slice::<Value>(&output.stdout)
&& let Some(addrs) = json.as_array() {
for addr_info in addrs {
if let Some(addr_info_obj) = addr_info.as_object()
&& let Some(addr_info) =
addr_info_obj.get("addr_info").and_then(|v| v.as_array())
{
for addr in addr_info {
if let Some(addr_obj) = addr.as_object()
&& let Some(ip) =
addr_obj.get("local").and_then(|v| v.as_str())
{
ipv4.push(ip.to_string());
}
}
}
}
}
// Get IPv6 addresses using JSON output
if let Ok(output) = Command::new("ip")
.args(["-j", "-6", "addr", "show", iface_name])
.output()
&& output.status.success()
&& let Ok(json) = serde_json::from_slice::<Value>(&output.stdout)
&& let Some(addrs) = json.as_array() {
for addr_info in addrs {
if let Some(addr_info_obj) = addr_info.as_object()
&& let Some(addr_info) =
addr_info_obj.get("addr_info").and_then(|v| v.as_array())
{
for addr in addr_info {
if let Some(addr_obj) = addr.as_object()
&& let Some(ip) =
addr_obj.get("local").and_then(|v| v.as_str())
{
// Skip link-local addresses
if !ip.starts_with("fe80::") {
ipv6.push(ip.to_string());
}
}
}
}
}
}
(ipv4, ipv6)
}
}