Files
harmony/harmony_inventory_agent/src/hwinfo.rs

1001 lines
35 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use harmony_types::net::MacAddress;
use log::{debug, trace, warn};
use serde::{Deserialize, Serialize};
use serde_json::Value;
use std::fs;
use std::path::Path;
use std::process::Command;
use sysinfo::System;
#[derive(Serialize, Deserialize, Debug)]
pub struct PhysicalHost {
pub storage_drives: Vec<StorageDrive>,
pub storage_controller: StorageController,
pub memory_modules: Vec<MemoryModule>,
pub cpus: Vec<CPU>,
pub chipset: Chipset,
pub network_interfaces: Vec<NetworkInterface>,
pub management_interface: Option<ManagementInterface>,
pub host_uuid: String,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct StorageDrive {
pub name: String,
pub model: String,
pub serial: String,
pub size_bytes: u64,
pub logical_block_size: u32,
pub physical_block_size: u32,
pub rotational: bool,
pub wwn: Option<String>,
pub interface_type: String,
pub smart_status: Option<String>,
}
impl StorageDrive {
pub fn dummy() -> Self {
Self {
name: String::new(),
model: String::new(),
serial: String::new(),
size_bytes: 0,
logical_block_size: 0,
physical_block_size: 0,
rotational: false,
wwn: None,
interface_type: String::new(),
smart_status: None,
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct StorageController {
pub name: String,
pub driver: String,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct MemoryModule {
pub size_bytes: u64,
pub speed_mhz: Option<u32>,
pub manufacturer: Option<String>,
pub part_number: Option<String>,
pub serial_number: Option<String>,
pub rank: Option<u8>,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct CPU {
pub model: String,
pub vendor: String,
pub cores: u32,
pub threads: u32,
pub frequency_mhz: u64,
}
#[derive(Serialize, Deserialize, Debug)]
pub struct Chipset {
pub name: String,
pub vendor: String,
}
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct NetworkInterface {
pub name: String,
pub mac_address: MacAddress,
pub speed_mbps: Option<u32>,
pub is_up: bool,
pub mtu: u32,
pub ipv4_addresses: Vec<String>,
pub ipv6_addresses: Vec<String>,
pub driver: String,
pub firmware_version: Option<String>,
}
impl NetworkInterface {
pub fn dummy() -> Self {
use harmony_macros::mac_address;
Self {
name: String::new(),
mac_address: mac_address!("00:00:00:00:00:00"),
speed_mbps: Some(0),
is_up: false,
mtu: 0,
ipv4_addresses: vec![],
ipv6_addresses: vec![],
driver: String::new(),
firmware_version: None,
}
}
}
#[derive(Serialize, Deserialize, Debug)]
pub struct ManagementInterface {
pub kind: String,
pub address: Option<String>,
pub firmware: Option<String>,
}
impl PhysicalHost {
pub fn gather() -> Result<Self, String> {
trace!("Start gathering physical host information");
let mut sys = System::new_all();
trace!("System new_all called");
sys.refresh_all();
trace!("System refresh_all called");
Self::all_tools_available()?;
trace!("All tools_available success");
let storage_drives = Self::gather_storage_drives()?;
trace!("got storage drives");
let storage_controller = Self::gather_storage_controller()?;
trace!("got storage controller");
let memory_modules = Self::gather_memory_modules()?;
trace!("got memory_modules");
let cpus = Self::gather_cpus(&sys)?;
trace!("got cpus");
let chipset = Self::gather_chipset()?;
trace!("got chipsets");
let network_interfaces = Self::gather_network_interfaces()?;
trace!("got network_interfaces");
let management_interface = Self::gather_management_interface()?;
trace!("got management_interface");
let host_uuid = Self::get_host_uuid()?;
Ok(Self {
storage_drives,
storage_controller,
memory_modules,
cpus,
chipset,
network_interfaces,
management_interface,
host_uuid,
})
}
fn all_tools_available() -> Result<(), String> {
let required_tools = [
("lsblk", Some("--version")),
("lspci", Some("--version")),
("lsmod", None),
("dmidecode", Some("--version")),
("smartctl", Some("--version")),
("ip", Some("route")), // No version flag available
];
let mut missing_tools = Vec::new();
debug!("Looking for required_tools {required_tools:?}");
for (tool, tool_arg) in required_tools.iter() {
// First check if tool exists in PATH using which(1)
let mut exists = if let Ok(output) = Command::new("which").arg(tool).output() {
output.status.success()
} else {
false
};
if !exists {
// Fallback: manual PATH search if which(1) is unavailable
debug!("Looking for {tool} in path");
if let Ok(path_var) = std::env::var("PATH") {
debug!("PATH is {path_var}");
exists = path_var.split(':').any(|dir| {
let tool_path = std::path::Path::new(dir).join(tool);
tool_path.exists() && Self::is_executable(&tool_path)
})
}
}
if !exists {
warn!("Unable to find tool {tool} from PATH");
missing_tools.push(*tool);
continue;
}
// Verify tool is functional by checking version/help output
let mut cmd = Command::new(tool);
if let Some(tool_arg) = tool_arg {
cmd.arg(tool_arg);
}
cmd.stdout(std::process::Stdio::null());
cmd.stderr(std::process::Stdio::null());
if let Ok(status) = cmd.status() {
if !status.success() {
warn!("Unable to test {tool} status failed");
missing_tools.push(*tool);
}
} else {
warn!("Unable to test {tool}");
missing_tools.push(*tool);
}
}
if !missing_tools.is_empty() {
let missing_str = missing_tools
.iter()
.map(|s| s.to_string())
.collect::<Vec<String>>()
.join(", ");
return Err(format!(
"The following required tools are not available: {}. Please install these tools to use PhysicalHost::gather()",
missing_str
));
}
debug!("All tools found!");
Ok(())
}
#[cfg(unix)]
fn is_executable(path: &std::path::Path) -> bool {
debug!("Checking if {} is executable", path.to_string_lossy());
use std::os::unix::fs::PermissionsExt;
match std::fs::metadata(path) {
Ok(meta) => meta.permissions().mode() & 0o111 != 0,
Err(_) => false,
}
}
#[cfg(not(unix))]
fn is_executable(_path: &std::path::Path) -> bool {
// On non-Unix systems, we assume existence implies executability
true
}
fn gather_storage_drives() -> Result<Vec<StorageDrive>, String> {
let mut drives = Vec::new();
trace!("Starting storage drive discovery using lsblk");
// Use lsblk with JSON output for robust parsing
trace!("Executing 'lsblk -d -o NAME,MODEL,SERIAL,SIZE,ROTA,WWN -n -e 7 --json'");
let output = Command::new("lsblk")
.args([
"-d",
"-o",
"NAME,MODEL,SERIAL,SIZE,ROTA,WWN",
"-n",
"-e",
"7",
"--json",
])
.output()
.map_err(|e| format!("Failed to execute lsblk: {}", e))?;
trace!(
"lsblk command executed successfully (status: {:?})",
output.status
);
if !output.status.success() {
let stderr_str = String::from_utf8_lossy(&output.stderr);
debug!("lsblk command failed: {stderr_str}");
return Err(format!("lsblk command failed: {stderr_str}"));
}
trace!("Parsing lsblk JSON output");
let json: Value = serde_json::from_slice(&output.stdout)
.map_err(|e| format!("Failed to parse lsblk JSON output: {}", e))?;
let blockdevices = json
.get("blockdevices")
.and_then(|v| v.as_array())
.ok_or("Invalid lsblk JSON: missing 'blockdevices' array")?;
trace!("Found {} blockdevices in lsblk output", blockdevices.len());
for device in blockdevices {
let name = device
.get("name")
.and_then(|v| v.as_str())
.ok_or("Missing 'name' in lsblk device")?
.to_string();
if name.is_empty() {
trace!("Skipping unnamed device entry: {:?}", device);
continue;
}
trace!("Inspecting block device: {name}");
// Extract metadata fields
let model = device
.get("model")
.and_then(|v| v.as_str())
.map(|s| s.trim().to_string())
.unwrap_or_default();
trace!("Model for {name}: '{}'", model);
let serial = device
.get("serial")
.and_then(|v| v.as_str())
.map(|s| s.trim().to_string())
.unwrap_or_default();
trace!("Serial for {name}: '{}'", serial);
let size_str = device
.get("size")
.and_then(|v| v.as_str())
.ok_or("Missing 'size' in lsblk device")?;
trace!("Reported size for {name}: {}", size_str);
let size_bytes = Self::parse_size(size_str)?;
trace!("Parsed size for {name}: {} bytes", size_bytes);
let rotational = device
.get("rota")
.and_then(|v| v.as_bool())
.ok_or("Missing 'rota' in lsblk device")?;
trace!("Rotational flag for {name}: {}", rotational);
let wwn = device
.get("wwn")
.and_then(|v| v.as_str())
.map(|s| s.trim().to_string())
.filter(|s| !s.is_empty() && s != "null");
trace!("WWN for {name}: {:?}", wwn);
let device_path = Path::new("/sys/block").join(&name);
trace!("Sysfs path for {name}: {:?}", device_path);
trace!("Reading logical block size for {name}");
let logical_block_size = Self::read_sysfs_u32(
&device_path.join("queue/logical_block_size"),
)
.map_err(|e| format!("Failed to read logical block size for {}: {}", name, e))?;
trace!("Logical block size for {name}: {}", logical_block_size);
trace!("Reading physical block size for {name}");
let physical_block_size = Self::read_sysfs_u32(
&device_path.join("queue/physical_block_size"),
)
.map_err(|e| format!("Failed to read physical block size for {}: {}", name, e))?;
trace!("Physical block size for {name}: {}", physical_block_size);
trace!("Determining interface type for {name}");
let interface_type = Self::get_interface_type(&name, &device_path)?;
trace!("Interface type for {name}: {}", interface_type);
trace!("Getting SMART status for {name}");
let smart_status = Self::get_smart_status(&name)?;
trace!("SMART status for {name}: {:?}", smart_status);
let mut drive = StorageDrive {
name: name.clone(),
model,
serial,
size_bytes,
logical_block_size,
physical_block_size,
rotational,
wwn,
interface_type,
smart_status,
};
// Enhance with additional sysfs info if available
if device_path.exists() {
trace!("Enhancing drive {name} with extra sysfs metadata");
if drive.model.is_empty() {
trace!("Reading model from sysfs for {name}");
drive.model = Self::read_sysfs_string(&device_path.join("device/model"))
.unwrap_or_else(|_| format!("Failed to read model for {}", name));
}
if drive.serial.is_empty() {
trace!("Reading serial from sysfs for {name}");
drive.serial = Self::read_sysfs_string(&device_path.join("device/serial"))
.unwrap_or_else(|_| format!("Failed to read serial for {}", name));
}
} else {
trace!(
"Sysfs path {:?} not found for drive {name}, skipping extra metadata",
device_path
);
}
debug!("Discovered storage drive: {drive:?}");
drives.push(drive);
}
debug!("Discovered total {} storage drives", drives.len());
trace!("All discovered dives: {drives:?}");
Ok(drives)
}
fn gather_storage_controller() -> Result<StorageController, String> {
let mut controller = StorageController {
name: "Unknown".to_string(),
driver: "Unknown".to_string(),
};
// Use lspci with JSON output if available
let output = Command::new("lspci")
.args(["-nn", "-d", "::0100", "-J"]) // Storage controllers class with JSON
.output()
.map_err(|e| format!("Failed to execute lspci: {}", e))?;
if output.status.success() {
let json: Value = serde_json::from_slice(&output.stdout)
.map_err(|e| format!("Failed to parse lspci JSON output: {}", e))?;
if let Some(devices) = json.as_array() {
for device in devices {
if let Some(device_info) = device.as_object()
&& let Some(name) = device_info
.get("device")
.and_then(|v| v.as_object())
.and_then(|v| v.get("name"))
.and_then(|v| v.as_str())
{
controller.name = name.to_string();
break;
}
}
}
}
// Fallback to text output if JSON fails or no device found
if controller.name == "Unknown" {
let output = Command::new("lspci")
.args(["-nn", "-d", "::0100"]) // Storage controllers class
.output()
.map_err(|e| format!("Failed to execute lspci (fallback): {}", e))?;
if output.status.success() {
let output_str = String::from_utf8_lossy(&output.stdout);
if let Some(line) = output_str.lines().next() {
let parts: Vec<&str> = line.split(':').collect();
if parts.len() > 2 {
controller.name = parts[2].trim().to_string();
}
}
}
}
// Try to get driver info from lsmod
let output = Command::new("lsmod")
.output()
.map_err(|e| format!("Failed to execute lsmod: {}", e))?;
if output.status.success() {
let output_str = String::from_utf8_lossy(&output.stdout);
for line in output_str.lines() {
if line.contains("ahci")
|| line.contains("nvme")
|| line.contains("megaraid")
|| line.contains("mpt3sas")
{
let parts: Vec<&str> = line.split_whitespace().collect();
if !parts.is_empty() {
controller.driver = parts[0].to_string();
break;
}
}
}
}
debug!("Found storage controller {controller:?}");
Ok(controller)
}
fn gather_memory_modules() -> Result<Vec<MemoryModule>, String> {
let mut modules = Vec::new();
let output = Command::new("dmidecode")
.arg("--type")
.arg("17")
.output()
.map_err(|e| format!("Failed to execute dmidecode: {}", e))?;
if !output.status.success() {
return Err(format!(
"dmidecode command failed: {}",
String::from_utf8_lossy(&output.stderr)
));
}
let output_str = String::from_utf8(output.stdout)
.map_err(|e| format!("Failed to parse dmidecode output: {}", e))?;
let sections: Vec<&str> = output_str.split("Memory Device").collect();
for section in sections.into_iter().skip(1) {
let mut module = MemoryModule {
size_bytes: 0,
speed_mhz: None,
manufacturer: None,
part_number: None,
serial_number: None,
rank: None,
};
for line in section.lines() {
let line = line.trim();
if let Some(size_str) = line.strip_prefix("Size: ") {
if size_str != "No Module Installed"
&& let Some((num, unit)) = size_str.split_once(' ')
&& let Ok(num) = num.parse::<u64>()
{
module.size_bytes = match unit {
"MB" => num * 1024 * 1024,
"GB" => num * 1024 * 1024 * 1024,
"KB" => num * 1024,
_ => 0,
};
}
} else if let Some(speed_str) = line.strip_prefix("Speed: ") {
if let Some((num, _unit)) = speed_str.split_once(' ') {
module.speed_mhz = num.parse().ok();
}
} else if let Some(man) = line.strip_prefix("Manufacturer: ") {
module.manufacturer = Some(man.to_string());
} else if let Some(part) = line.strip_prefix("Part Number: ") {
module.part_number = Some(part.to_string());
} else if let Some(serial) = line.strip_prefix("Serial Number: ") {
module.serial_number = Some(serial.to_string());
} else if let Some(rank) = line.strip_prefix("Rank: ") {
module.rank = rank.parse().ok();
}
}
if module.size_bytes > 0 {
modules.push(module);
}
}
debug!("Found memory modules {modules:?}");
Ok(modules)
}
fn gather_cpus(sys: &System) -> Result<Vec<CPU>, String> {
let mut cpus = Vec::new();
let global_cpu = sys.global_cpu_info();
cpus.push(CPU {
model: global_cpu.brand().to_string(),
vendor: global_cpu.vendor_id().to_string(),
cores: sys.physical_core_count().unwrap_or(1) as u32,
threads: sys.cpus().len() as u32,
frequency_mhz: global_cpu.frequency(),
});
debug!("Found cpus {cpus:?}");
Ok(cpus)
}
fn gather_chipset() -> Result<Chipset, String> {
let chipset = Chipset {
name: Self::read_dmi("baseboard-product-name")?,
vendor: Self::read_dmi("baseboard-manufacturer")?,
};
debug!("Found chipset {chipset:?}");
Ok(chipset)
}
fn gather_network_interfaces() -> Result<Vec<NetworkInterface>, String> {
let mut interfaces = Vec::new();
let sys_net_path = Path::new("/sys/class/net");
trace!("Reading /sys/class/net");
let entries = fs::read_dir(sys_net_path)
.map_err(|e| format!("Failed to read /sys/class/net: {}", e))?;
trace!("Got entries {entries:?}");
for entry in entries {
let entry = entry.map_err(|e| format!("Failed to read directory entry: {}", e))?;
let iface_name = entry
.file_name()
.into_string()
.map_err(|_| "Invalid UTF-8 in interface name")?;
let iface_path = entry.path();
trace!("Inspecting interface {iface_name} path {iface_path:?}");
// Skip virtual interfaces
if iface_name.starts_with("lo")
|| iface_name.starts_with("docker")
|| iface_name.starts_with("virbr")
|| iface_name.starts_with("veth")
|| iface_name.starts_with("br-")
|| iface_name.starts_with("tun")
|| iface_name.starts_with("wg")
{
trace!(
"Skipping interface {iface_name} because it appears to be virtual/unsupported"
);
continue;
}
// Check if it's a physical interface by looking for device directory
if !iface_path.join("device").exists() {
trace!(
"Skipping interface {iface_name} since {iface_path:?}/device does not exist"
);
continue;
}
trace!("Reading MAC address for {iface_name}");
let mac_address = Self::read_sysfs_string(&iface_path.join("address"))
.map_err(|e| format!("Failed to read MAC address for {}: {}", iface_name, e))?;
let mac_address = MacAddress::try_from(mac_address).map_err(|e| e.to_string())?;
trace!("MAC address for {iface_name}: {mac_address}");
let speed_path = iface_path.join("speed");
let speed_mbps = if speed_path.exists() {
trace!("Reading speed for {iface_name} from {:?}", speed_path);
match Self::read_sysfs_u32(&speed_path) {
Ok(speed) => {
trace!("Speed for {iface_name}: {speed} Mbps");
Some(speed)
}
Err(e) => {
debug!(
"Failed to read speed for {}: {} (this may be expected on WiFi interfaces)",
iface_name, e
);
None
}
}
} else {
trace!("Speed file not found for {iface_name}, skipping");
None
};
trace!("Reading operstate for {iface_name}");
let operstate = Self::read_sysfs_string(&iface_path.join("operstate"))
.map_err(|e| format!("Failed to read operstate for {}: {}", iface_name, e))?;
trace!("Operstate for {iface_name}: {operstate}");
trace!("Reading MTU for {iface_name}");
let mtu = Self::read_sysfs_u32(&iface_path.join("mtu"))
.map_err(|e| format!("Failed to read MTU for {}: {}", iface_name, e))?;
trace!("MTU for {iface_name}: {mtu}");
trace!("Reading driver for {iface_name}");
let driver =
Self::read_sysfs_symlink_basename(&iface_path.join("device/driver/module"))
.map_err(|e| format!("Failed to read driver for {}: {}", iface_name, e))?;
trace!("Driver for {iface_name}: {driver}");
trace!("Reading firmware version for {iface_name}");
let firmware_version = Self::read_sysfs_opt_string(
&iface_path.join("device/firmware_version"),
)
.map_err(|e| format!("Failed to read firmware version for {}: {}", iface_name, e))?;
trace!("Firmware version for {iface_name}: {firmware_version:?}");
trace!("Fetching IP addresses for {iface_name}");
let (ipv4_addresses, ipv6_addresses) = Self::get_interface_ips_json(&iface_name)
.map_err(|e| format!("Failed to get IP addresses for {}: {}", iface_name, e))?;
trace!("Interface {iface_name} has IPv4: {ipv4_addresses:?}, IPv6: {ipv6_addresses:?}");
let is_up = operstate == "up";
trace!("Constructing NetworkInterface for {iface_name} (is_up={is_up})");
let iface = NetworkInterface {
name: iface_name.clone(),
mac_address,
speed_mbps,
is_up,
mtu,
ipv4_addresses,
ipv6_addresses,
driver,
firmware_version,
};
debug!("Discovered interface: {iface:?}");
interfaces.push(iface);
}
debug!("Discovered total {} network interfaces", interfaces.len());
trace!("Interfaces collected: {interfaces:?}");
Ok(interfaces)
}
fn gather_management_interface() -> Result<Option<ManagementInterface>, String> {
let mgmt = if Path::new("/dev/ipmi0").exists() {
Ok(Some(ManagementInterface {
kind: "IPMI".to_string(),
address: None,
firmware: Some(Self::read_dmi("bios-version")?),
}))
} else if Path::new("/sys/class/misc/mei").exists() {
Ok(Some(ManagementInterface {
kind: "Intel ME".to_string(),
address: None,
firmware: None,
}))
} else {
Ok(None)
};
debug!("Found management interface {mgmt:?}");
mgmt
}
fn get_host_uuid() -> Result<String, String> {
let uuid = Self::read_dmi("system-uuid");
debug!("Found uuid {uuid:?}");
uuid
}
// Helper methods
fn read_sysfs_string(path: &Path) -> Result<String, String> {
fs::read_to_string(path)
.map(|s| s.trim().to_string())
.map_err(|e| format!("Failed to read {}: {}", path.display(), e))
}
fn read_sysfs_opt_string(path: &Path) -> Result<Option<String>, String> {
match fs::read_to_string(path) {
Ok(s) => {
let s = s.trim().to_string();
Ok(if s.is_empty() { None } else { Some(s) })
}
Err(e) if e.kind() == std::io::ErrorKind::NotFound => Ok(None),
Err(e) => Err(format!("Failed to read {}: {}", path.display(), e)),
}
}
fn read_sysfs_u32(path: &Path) -> Result<u32, String> {
fs::read_to_string(path)
.map_err(|e| format!("Failed to read {}: {}", path.display(), e))?
.trim()
.parse()
.map_err(|e| format!("Failed to parse {}: {}", path.display(), e))
}
fn read_sysfs_symlink_basename(path: &Path) -> Result<String, String> {
match fs::read_link(path) {
Ok(target_path) => match target_path.file_name() {
Some(name_osstr) => match name_osstr.to_str() {
Some(name_str) => Ok(name_str.to_string()),
None => Err(format!(
"Symlink target basename is not valid UTF-8: {}",
target_path.display()
)),
},
None => Err(format!(
"Symlink target has no basename: {} -> {}",
path.display(),
target_path.display()
)),
},
Err(e) if e.kind() == std::io::ErrorKind::NotFound => Err(format!(
"Could not resolve symlink for path : {}",
path.display()
)),
Err(e) => Err(format!("Failed to read symlink {}: {}", path.display(), e)),
}
}
fn read_dmi(field: &str) -> Result<String, String> {
let output = Command::new("dmidecode")
.arg("-s")
.arg(field)
.output()
.map_err(|e| format!("Failed to execute dmidecode for field {}: {}", field, e))?;
if !output.status.success() {
return Err(format!(
"dmidecode command failed for field {}: {}",
field,
String::from_utf8_lossy(&output.stderr)
));
}
String::from_utf8(output.stdout)
.map(|s| s.trim().to_string())
.map_err(|e| {
format!(
"Failed to parse dmidecode output for field {}: {}",
field, e
)
})
}
fn get_interface_type(device_name: &str, device_path: &Path) -> Result<String, String> {
if device_name.starts_with("nvme") {
Ok("NVMe".to_string())
} else if device_name.starts_with("sd") {
Ok("SATA".to_string())
} else if device_name.starts_with("hd") {
Ok("IDE".to_string())
} else if device_name.starts_with("vd") {
Ok("VirtIO".to_string())
} else if device_name.starts_with("sr") {
Ok("CDROM".to_string())
} else if device_name.starts_with("zram") {
Ok("Ramdisk".to_string())
} else {
// Try to determine from device path
let subsystem = Self::read_sysfs_string(&device_path.join("device/subsystem"))
.unwrap_or(String::new());
Ok(subsystem
.split('/')
.next_back()
.unwrap_or("Unknown")
.to_string())
}
}
fn get_smart_status(device_name: &str) -> Result<Option<String>, String> {
let output = Command::new("smartctl")
.arg("-H")
.arg(format!("/dev/{}", device_name))
.output()
.map_err(|e| format!("Failed to execute smartctl for {}: {}", device_name, e))?;
if !output.status.success() {
return Ok(None);
}
let stdout = String::from_utf8(output.stdout)
.map_err(|e| format!("Failed to parse smartctl output for {}: {}", device_name, e))?;
for line in stdout.lines() {
if line.contains("SMART overall-health self-assessment") {
if let Some(status) = line.split(':').nth(1) {
return Ok(Some(status.trim().to_string()));
}
}
}
Ok(None)
}
fn parse_size(size_str: &str) -> Result<u64, String> {
debug!("Parsing size_str '{size_str}'");
let size;
if size_str.ends_with('T') {
size = size_str[..size_str.len() - 1]
.parse::<f64>()
.map(|t| t * 1024.0 * 1024.0 * 1024.0 * 1024.0)
.map_err(|e| format!("Failed to parse T size '{}': {}", size_str, e))
} else if size_str.ends_with('G') {
size = size_str[..size_str.len() - 1]
.parse::<f64>()
.map(|g| g * 1024.0 * 1024.0 * 1024.0)
.map_err(|e| format!("Failed to parse G size '{}': {}", size_str, e))
} else if size_str.ends_with('M') {
size = size_str[..size_str.len() - 1]
.parse::<f64>()
.map(|m| m * 1024.0 * 1024.0)
.map_err(|e| format!("Failed to parse M size '{}': {}", size_str, e))
} else if size_str.ends_with('K') {
size = size_str[..size_str.len() - 1]
.parse::<f64>()
.map(|k| k * 1024.0)
.map_err(|e| format!("Failed to parse K size '{}': {}", size_str, e))
} else if size_str.ends_with('B') {
size = size_str[..size_str.len() - 1]
.parse::<f64>()
.map_err(|e| format!("Failed to parse B size '{}': {}", size_str, e))
} else {
size = size_str
.parse::<f64>()
.map_err(|e| format!("Failed to parse size '{}': {}", size_str, e))
}
size.map(|s| s as u64)
}
// FIXME when scanning an interface that is part of a bond/bridge we won't get an address on the
// interface, we should be looking at the bond/bridge device. For example, br-ex on k8s nodes.
fn get_interface_ips_json(iface_name: &str) -> Result<(Vec<String>, Vec<String>), String> {
let mut ipv4 = Vec::new();
let mut ipv6 = Vec::new();
// Get IPv4 addresses using JSON output
let output = Command::new("ip")
.args(["-j", "-4", "addr", "show", iface_name])
.output()
.map_err(|e| {
format!(
"Failed to execute ip command for IPv4 on {}: {}",
iface_name, e
)
})?;
if !output.status.success() {
return Err(format!(
"ip command for IPv4 on {} failed: {}",
iface_name,
String::from_utf8_lossy(&output.stderr)
));
}
let json: Value = serde_json::from_slice(&output.stdout).map_err(|e| {
format!(
"Failed to parse ip JSON output for IPv4 on {}: {}",
iface_name, e
)
})?;
if let Some(addrs) = json.as_array() {
for addr_info in addrs {
if let Some(addr_info_obj) = addr_info.as_object()
&& let Some(addr_info) =
addr_info_obj.get("addr_info").and_then(|v| v.as_array())
{
for addr in addr_info {
if let Some(addr_obj) = addr.as_object()
&& let Some(ip) = addr_obj.get("local").and_then(|v| v.as_str())
{
ipv4.push(ip.to_string());
}
}
}
}
}
// Get IPv6 addresses using JSON output
let output = Command::new("ip")
.args(["-j", "-6", "addr", "show", iface_name])
.output()
.map_err(|e| {
format!(
"Failed to execute ip command for IPv6 on {}: {}",
iface_name, e
)
})?;
if !output.status.success() {
return Err(format!(
"ip command for IPv6 on {} failed: {}",
iface_name,
String::from_utf8_lossy(&output.stderr)
));
}
let json: Value = serde_json::from_slice(&output.stdout).map_err(|e| {
format!(
"Failed to parse ip JSON output for IPv6 on {}: {}",
iface_name, e
)
})?;
if let Some(addrs) = json.as_array() {
for addr_info in addrs {
if let Some(addr_info_obj) = addr_info.as_object()
&& let Some(addr_info) =
addr_info_obj.get("addr_info").and_then(|v| v.as_array())
{
for addr in addr_info {
if let Some(addr_obj) = addr.as_object()
&& let Some(ip) = addr_obj.get("local").and_then(|v| v.as_str())
{
// Skip link-local addresses
if !ip.starts_with("fe80::") {
ipv6.push(ip.to_string());
}
}
}
}
}
}
Ok((ipv4, ipv6))
}
}